Searching across hundreds of databases

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Resource Name
Multiple-Path Particle Dosimetry Model
RRID:SCR_001486 RRID Copied      
PDF Report How to cite
Multiple-Path Particle Dosimetry Model (RRID:SCR_001486)
Copy Citation Copied
Resource Information

URL: http://www.ara.com/products/mppd.htm

Proper Citation: Multiple-Path Particle Dosimetry Model (RRID:SCR_001486)

Description: Computational model that can be used for estimating human and rat airway particle dosimetry. The model is applicable to risk assessment, research, and education. The MPPD model calculates the deposition and clearance of monodisperse and polydisperse aerosols in the respiratory tracts of rats and human adults and children (deposition only) for particles ranging in size from ultrafine (0.01 micrometers) to coarse (20 micrometers). The models are based on single-path and multiple-path methods for tracking air flow and calculating aerosol deposition in the lung. The single-path method calculates deposition in a typical path per airway generation, while the multiple-path method calculates particle deposition in all airways of the lung and provides lobar-specific and airway-specific information. Within each airway, deposition is calculated using theoretically derived efficiencies for deposition by diffusion, sedimentation, and impaction within the airway or airway bifurcation. Filtration of aerosols by the nose and mouth is determined using empirical efficiency functions. The MPPD model includes calculations of particle clearance in the lung following deposition.

Abbreviations: MPPD

Synonyms: Multiple Path Particle Dosimetry Model

Resource Type: software resource

Defining Citation: PMID:8566482

Keywords: model, computational model, particle dosimetry, risk assessment, adult human, child, aerosol, deposition, clearance, lung

Expand All
Usage and Citation Metrics

We found {{ ctrl2.mentions.total_count }} mentions in open access literature.

We have not found any literature mentions for this resource.

We are searching literature mentions for this resource.

Most recent articles:

{{ mention._source.dc.creators[0].familyName }} {{ mention._source.dc.creators[0].initials }}, et al. ({{ mention._source.dc.publicationYear }}) {{ mention._source.dc.title }} {{ mention._source.dc.publishers[0].name }}, {{ mention._source.dc.publishers[0].volume }}({{ mention._source.dc.publishers[0].issue }}), {{ mention._source.dc.publishers[0].pagination }}. (PMID:{{ mention._id.replace('PMID:', '') }})

Checkfor all resource mentions.

Collaborator Network

A list of researchers who have used the resource and an author search tool

Find mentions based on location


{{ ctrl2.mentions.errors.location }}

A list of researchers who have used the resource and an author search tool. This is available for resources that have literature mentions.

Ratings and Alerts

No rating or validation information has been found for Multiple-Path Particle Dosimetry Model.

No alerts have been found for Multiple-Path Particle Dosimetry Model.

Data and Source Information