Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
The Hamner Institute for Health Sciences: BMDExpress and The multiple-path particle dosimetry (RRID:SCR_005511)Copy Citation Copied
URL: http://www.thehamner.org/technology-and-development/technology-transfer/index.html
Proper Citation: The Hamner Institute for Health Sciences: BMDExpress and The multiple-path particle dosimetry (RRID:SCR_005511)
Description: THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 24, 2013. BMDExpress is a Java application used to analyze dose-response data from microarray experiments. The program was designed to perform a stepwise analysis on microarray data that combines bench mark dose (BMD) calculations with gene ontology (GO) classification analysis. The combination provides dose estimates at which different cellular processes are altered at a defined increase in risk based on expression levels in the untreated controls. The fitting of the data to the statistical models (linear, 2 polynomial models, 3 polynomial, and power models) is performed using source code borrowed from the U.S. Environmental Protection Agency''''s BMDS software. The MPPD model is a computational model that can be used for estimating human and rat airway particle dosimetry. The model is applicable to risk assessment, research, and education. The MPPD model calculates the deposition and clearance of monodisperse and polydisperse aerosols in the respiratory tracts of rats and human adults and children (deposition only) for particles ranging in size from ultrafine (0.01 m) to coarse (20 m). The models are based on single-path and multiple-path methods for tracking air flow and calculating aerosol deposition in the lung. The single-path method calculates deposition in a typical path per airway generation, while the multiple-path method calculates particle deposition in all airways of the lung and provides lobar-specific and airway-specific information. Within each airway, deposition is calculated using theoretically derived efficiencies for deposition by diffusion, sedimentation, and impaction within the airway or airway bifurcation. Filtration of aerosols by the head is determined using empirical efficiency functions. The MPPD model includes calculations of particle clearance in the lung following deposition. Eight tutorials are provided so that the user can learn to interact with the software.
Synonyms: BMDExpress & MPPD
Resource Type: data processing software, data analysis software, software resource, software application
Keywords: aerosol, airway, children, dose-response, human, lung, microarray, rat, respiratory tract, risk assessment
Expand Allis related to |
|
is related to |
We found {{ ctrl2.mentions.total_count }} mentions in open access literature.
We have not found any literature mentions for this resource.
We are searching literature mentions for this resource.
Most recent articles:
{{ mention._source.dc.creators[0].familyName }} {{ mention._source.dc.creators[0].initials }}, et al. ({{ mention._source.dc.publicationYear }}) {{ mention._source.dc.title }} {{ mention._source.dc.publishers[0].name }}, {{ mention._source.dc.publishers[0].volume }}({{ mention._source.dc.publishers[0].issue }}), {{ mention._source.dc.publishers[0].pagination }}. (PMID:{{ mention._id.replace('PMID:', '') }})
A list of researchers who have used the resource and an author search tool
A list of researchers who have used the resource and an author search tool. This is available for resources that have literature mentions.
No rating or validation information has been found for The Hamner Institute for Health Sciences: BMDExpress and The multiple-path particle dosimetry.
No alerts have been found for The Hamner Institute for Health Sciences: BMDExpress and The multiple-path particle dosimetry.
Source: SciCrunch Registry