Resource Summary Report

Generated by NIF on May 19, 2025

University of Florida Systems Physiology and Omics Core Facility

RRID:SCR_025083

Type: Tool

Proper Citation

University of Florida Systems Physiology and Omics Core Facility (RRID:SCR_025083)

Resource Information

URL: https://aging.ufl.edu/research/oaic-cores/systems-physiology-and-omics-core/

Proper Citation: University of Florida Systems Physiology and Omics Core Facility (RRID:SCR_025083)

Description: Provides specialized resources and expertise to support scientists that want to incorporate systemic measures of mouse activity, metabolism and feeding. The systems are also embedded within light regulated environments to capture circadian, time of day, based outcomes. Supports scientists wanting to perform circadian type analyses with either preclinical or clinical time series data. Supports scientists wanting to incorporate -Omics measures into their studies with experience in genomics, proteomics and metabolomics assays/analyses. These services are available to support new investigators, early-stage investigators and current investigators in aging.

Synonyms: Systems Physiology and Omics Core, University of Florida Systems Physiology and Omics Core

Resource Type: core facility, service resource, access service resource

Keywords: ABRF, systemic measures, mouse activity, metabolism, feeding, light regulated environments to capture circadian,

Funding:

Resource Name: University of Florida Systems Physiology and Omics Core Facility

Resource ID: SCR_025083

Alternate IDs: ABRF_2662

Alternate URLs: https://coremarketplace.org/?FacilityID=2662&citation=1

Record Creation Time: 20240306T053236+0000

Record Last Update: 20250519T205419+0000

Ratings and Alerts

No rating or validation information has been found for University of Florida Systems Physiology and Omics Core Facility.

No alerts have been found for University of Florida Systems Physiology and Omics Core Facility.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 2 mentions in open access literature.

Listed below are recent publications. The full list is available at NIF.

Viggars MR, et al. (2024) Skeletal muscle BMAL1 is necessary for transcriptional adaptation of local and peripheral tissues in response to endurance exercise training. Molecular metabolism, 86, 101980.

Gutierrez-Monreal MA, et al. (2024) Targeted Bmal1 restoration in muscle prolongs lifespan with systemic health effects in aging model. JCI insight, 9(22).