Resource Summary Report

Generated by NIF on Apr 18, 2025

Stanford Neuroscience Gene Vector and Virus Core Facility

RRID:SCR_023250

Type: Tool

Proper Citation

Stanford Neuroscience Gene Vector and Virus Core Facility (RRID:SCR_023250)

Resource Information

URL: https://neuroscience.stanford.edu/research/neuroscience-community-labs/gene-vector-and-virus-core

Proper Citation: Stanford Neuroscience Gene Vector and Virus Core Facility (RRID:SCR_023250)

Description: Core centralizes process of producing and distributing viral vectors and cDNA plasmids.

Abbreviations: GVVC

Synonyms: Stanford Neuroscience Gene Vector and Virus Core, Neuroscience Gene Vector and Virus Core (GVVC)

Resource Type: access service resource, service resource, core facility

Keywords: USEDit, ABRF, viral vectors, cDNA plasmids, producing and distributing viral vectors, producing and distributing cDNA plasmids,

Funding:

Resource Name: Stanford Neuroscience Gene Vector and Virus Core Facility

Resource ID: SCR_023250

Alternate IDs: ABRF_2477

Alternate URLs: https://coremarketplace.org/?FacilityID=2477&citation=1,

https://coremarketplace.org/RRID:SCR_023250?citation=1

Record Creation Time: 20230208T050154+0000

Record Last Update: 20250418T055640+0000

Ratings and Alerts

No rating or validation information has been found for Stanford Neuroscience Gene Vector and Virus Core Facility.

No alerts have been found for Stanford Neuroscience Gene Vector and Virus Core Facility.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 4 mentions in open access literature.

Listed below are recent publications. The full list is available at NIF.

Barnett D, et al. (2024) Mitochondrial complex III-derived ROS amplify immunometabolic changes in astrocytes and promote dementia pathology. bioRxiv: the preprint server for biology.

James JG, et al. (2024) Mimicking opioid analgesia in cortical pain circuits. bioRxiv: the preprint server for biology.

Salimando GJ, et al. (2023) Human OPRM1 and murine Oprm1 promoter driven viral constructs for genetic access to ?-opioidergic cell types. Nature communications, 14(1), 5632.

Kimpo RR, et al. (2014) Gating of neural error signals during motor learning. eLife, 3, e02076.