Resource Summary Report

Generated by NIF on Apr 18, 2025

Stanford University Community of Shared Advanced Research Platforms

RRID:SCR_022986 Type: Tool

Proper Citation

Stanford University Community of Shared Advanced Research Platforms (RRID:SCR_022986)

Resource Information

URL: https://csharp.stanford.edu/

Proper Citation: Stanford University Community of Shared Advanced Research Platforms (RRID:SCR_022986)

Description: Center coordinates ideas and investments to advance and democratize access to Stanford cores, instrumentation, scientific and technical staff, allowing users to perform innovative, rigorous experiments.

Abbreviations: C-ShARP

Synonyms: Community of Shared Advanced Research Platforms

Resource Type: portal, organization portal, data or information resource

Keywords: USEDit, ABRF, access to Stanford cores, access to Stanford instrumentation, access to Stanford scientific and technical staff

Funding:

Availability: Free, Freely available

Resource Name: Stanford University Community of Shared Advanced Research Platforms

Resource ID: SCR_022986

Alternate IDs: ABRF_2461

Alternate URLs: https://coremarketplace.org/?FacilityID=2461&citation=1

Record Creation Time: 20221119T050156+0000

Record Last Update: 20250417T065730+0000

Ratings and Alerts

No rating or validation information has been found for Stanford University Community of Shared Advanced Research Platforms.

No alerts have been found for Stanford University Community of Shared Advanced Research Platforms.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 2 mentions in open access literature.

Listed below are recent publications. The full list is available at NIF.

Horst M, et al. (2024) Fluorination Affects the Force Sensitivity and Nonequilibrium Dynamics of the Mechanochemical Unzipping of Ladderanes. Journal of the American Chemical Society, 146(47), 32651.

Chosy MB, et al. (2024) Vancomycin-Polyguanidino Dendrimer Conjugates Inhibit Growth of Antibiotic-Resistant Gram-Positive and Gram-Negative Bacteria and Eradicate Biofilm-Associated S. aureus. ACS infectious diseases, 10(2), 384.