Resource Summary Report

Generated by <u>NIF</u> on May 25, 2025

Drexel University Materials Characterization Core Facility

RRID:SCR_022684 Type: Tool

Proper Citation

Drexel University Materials Characterization Core Facility (RRID:SCR_022684)

Resource Information

URL: https://drexel.edu/core-facilities/facilities/material-characterization/

Proper Citation: Drexel University Materials Characterization Core Facility (RRID:SCR_022684)

Description: Facility provides technical expertise and instrumentation including nanoscience and engineering, polymer research, biomedical engineering, and chemistry and physics of solid materials. Houses electron microscopes, X-ray diffractometers, X-ray photoelectron spectrometer and suite of sample preparation tools. Staff members provide expert consultation, training and assistance to MCC users. Core is involved in teaching both undergraduate and graduate level courses in Materials Science and Engineering, Mechanical Engineering and Mechanics, Biomedical Engineering, and Biology. Trained and certified users are welcome to work independently on our instruments.

Abbreviations: MCC

Synonyms: Materials Characterization Core, Drexel University Materials Characterization Core

Resource Type: core facility, service resource, access service resource

Keywords: USEDit, ABRF, nanoscience and engineering, polymer research, biomedical engineering, chemistry and physics of solid materials

Funding:

Availability: open

Resource Name: Drexel University Materials Characterization Core Facility

Resource ID: SCR_022684

Alternate IDs: ABRF_1502

Alternate URLs: https://coremarketplace.org/?FacilityID=1502&citation=1

Record Creation Time: 20220818T050143+0000

Record Last Update: 20250525T032938+0000

Ratings and Alerts

No rating or validation information has been found for Drexel University Materials Characterization Core Facility.

No alerts have been found for Drexel University Materials Characterization Core Facility.

Data and Source Information

Source: <u>SciCrunch Registry</u>

Usage and Citation Metrics

We found 2 mentions in open access literature.

Listed below are recent publications. The full list is available at <u>NIF</u>.

Bi L, et al. (2024) Soft, Multifunctional MXene-Coated Fiber Microelectrodes for Biointerfacing. ACS nano, 18(34), 23217.

Cardoza NA, et al. (2023) One-Dimensional, Titania Lepidocrocite-Based Nanofilaments and Their Polysulfide Anchoring Capabilities in Lithium-Sulfur Batteries. ACS applied materials & interfaces.