Resource Summary Report

Generated by NIF on Apr 18, 2025

Brainrender

RRID:SCR_022328 Type: Tool

Proper Citation

Brainrender (RRID:SCR_022328)

Resource Information

URL: https://edspace.american.edu/openbehavior/project/brainrender/

Proper Citation: Brainrender (RRID:SCR_022328)

Description: Software Python package for visualizing and interacting with datasets registered to brain atlases. Used for visualization of neuroanatomical and morphological data.

Resource Type: data processing software, software application, software resource, data visualization software, software toolkit

Defining Citation: DOI:10.7554/eLife.65751

Keywords: OpenBehavior, neuroanatomical and morphological data visualization

Funding:

Availability: Free, Available for download, Freely available

Resource Name: Brainrender

Resource ID: SCR_022328

Alternate URLs: https://github.com/brainglobe/brainrender

License: Creative Commons Attribution 4.0 International License

Record Creation Time: 20220602T050139+0000

Record Last Update: 20250418T055620+0000

Ratings and Alerts

No rating or validation information has been found for Brainrender.

No alerts have been found for Brainrender.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 5 mentions in open access literature.

Listed below are recent publications. The full list is available at NIF.

Jones A, et al. (2024) Optimizing the design of spatial genomic studies. Nature communications, 15(1), 4987.

Zangen E, et al. (2024) Prefrontal cortex neurons encode ambient light intensity differentially across regions and layers. Nature communications, 15(1), 5501.

Farrell JS, et al. (2024) Neural and behavioural state switching during hippocampal dentate spikes. Nature.

Zhu Y, et al. (2023) Transport pathways and kinetics of cerebrospinal fluid tracers in mouse brain observed by dynamic contrast-enhanced MRI. Scientific reports, 13(1), 13882.

Kintscher M, et al. (2023) A striatal circuit balances learned fear in the presence and absence of sensory cues. eLife, 12.