Generated by <u>NIF</u> on May 18, 2025

University of Pittsburgh Microscopy and Imaging Suite Core Facility

RRID:SCR_022084 Type: Tool

Proper Citation

University of Pittsburgh Microscopy and Imaging Suite Core Facility (RRID:SCR_022084)

Resource Information

URL: http://researchservices.pitt.edu/facilities/microscopy-and-imaging-suite

Proper Citation: University of Pittsburgh Microscopy and Imaging Suite Core Facility (RRID:SCR_022084)

Description: Facility equipped with instruments for optical and electron microscopy, and Flow Cytometry.Offers experimental design, equipment training, staff operated image acquisition, and image analysis. All users must be trained by Facility staff to access the equipment.

Synonyms: Microscopy and Imaging Suite, University of Pittsburgh Microscopy and Imaging Suite

Resource Type: core facility, service resource, access service resource

Keywords: USEDit, ABRF, optical and electron microscopy, Flow Cytometry, equipment training

Funding:

Availability: open

Resource Name: University of Pittsburgh Microscopy and Imaging Suite Core Facility

Resource ID: SCR_022084

Alternate IDs: ABRF_1332

Alternate URLs: https://coremarketplace.org/?FacilityID=1332

Record Creation Time: 20220421T050138+0000

Record Last Update: 20250517T060457+0000

Ratings and Alerts

No rating or validation information has been found for University of Pittsburgh Microscopy and Imaging Suite Core Facility.

No alerts have been found for University of Pittsburgh Microscopy and Imaging Suite Core Facility.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 4 mentions in open access literature.

Listed below are recent publications. The full list is available at <u>NIF</u>.

Oppenheimer KG, et al. (2024) Optimization of the fluorogen-activating protein tag for quantitative protein trafficking and colocalization studies in S. cerevisiae. Molecular biology of the cell, 35(7), mr5.

Kok M, et al. (2024) The expression system influences stability, maturation efficiency, and oligomeric properties of the potassium-chloride co-transporter KCC2. Neurochemistry international, 174, 105695.

Lesko MA, et al. (2023) Changing course: Glucose starvation drives nuclear accumulation of Hexokinase 2 in S. cerevisiae. PLoS genetics, 19(5), e1010745.

Sannino S, et al. (2023) Non-Essential Amino Acid Availability Influences Proteostasis and Breast Cancer Cell Survival During Proteotoxic Stress. Molecular cancer research : MCR, 21(7), 675.