Resource Summary Report

Generated by <u>NIF</u> on May 19, 2025

PAM

RRID:SCR_020966 Type: Tool

Proper Citation

PAM (RRID:SCR_020966)

Resource Information

URL: https://gitlab.com/PAM-PIE/PAM

Proper Citation: PAM (RRID:SCR_020966)

Description: Software package for quantitative analysis of fluorescence microscopy and spectroscopy data, with focus on experiments using pulsed interleaved excitation. Open source software package written in MATLAB that offers workflow through its graphical user interface. Framework for integrated analysis of imaging, single-molecule, and ensemble fluorescence data.Supports most types of data collection modalities.

Synonyms: Pulsed interleaved excitation Analysis with Matlab, Pulsed Interleaved Excitation analysis with MATLAB, PIE analysis with MATLAB

Resource Type: software application, software resource, data analysis software, data processing software

Defining Citation: PMID:29642023

Keywords: Quantitative data analysis, fluorescence microscopy data, data analysis, spectroscopy data analysis, pulsed interleaved excitation, imaging integrated analysis

Funding: Deutsche Forschungsgemeinschaft ; Ludwig-Maximilians-University; Munich; Germany ; Research Foundation Flanders

Availability: Free, Available for download, Freely available

Resource Name: PAM

Resource ID: SCR_020966

Alternate URLs: http://www.cup.uni-muenchen.de/pc/lamb/software/pam.html

License: GNU General Public License v3.0

Record Creation Time: 20220129T080353+0000

Record Last Update: 20250517T060421+0000

Ratings and Alerts

No rating or validation information has been found for PAM.

No alerts have been found for PAM.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 3 mentions in open access literature.

Listed below are recent publications. The full list is available at <u>NIF</u>.

Fenn KL, et al. (2024) Outer membrane protein assembly mediated by BAM-SurA complexes. Nature communications, 15(1), 7612.

Coucke Q, et al. (2023) Particle-based phasor-FLIM-FRET resolves protein-protein interactions inside single viral particles. Biophysical reports, 3(3), 100122.

Lerner E, et al. (2021) FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife, 10.