Resource Summary Report

Generated by <u>NIF</u> on May 14, 2025

LAMA

RRID:SCR_019133 Type: Tool

Proper Citation

LAMA (RRID:SCR_019133)

Resource Information

URL: https://github.com/mpi2/LAMA

Proper Citation: LAMA (RRID:SCR_019133)

Description: Open source pipeline to automatically identify embryo dysmorphology from 3D volumetric images. Automated image analysis for developmental phenotyping of mouse embryos.

Synonyms: Lightweight Analysis of Morphological Abnormalities

Resource Type: software resource, software application, image analysis software, data processing software

Defining Citation: DOI:10.1101/2020.05.04.075853

Keywords: Phenotype, developmental phenotyping, MRC Harwell Institute, automatically identify embryo dysmorphology, 3D volumetric image, image screening, mouse embryo

Funding:

Resource Name: LAMA

Resource ID: SCR_019133

Alternate URLs: https://github.com/mpi2/LAMA/wiki

License: Apache License, Version 2.0

Record Creation Time: 20220129T080343+0000

Ratings and Alerts

No rating or validation information has been found for LAMA.

No alerts have been found for LAMA.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 2 mentions in open access literature.

Listed below are recent publications. The full list is available at <u>NIF</u>.

Horner NR, et al. (2021) LAMA: automated image analysis for the developmental phenotyping of mouse embryos. Development (Cambridge, England), 148(18).

Mrestani A, et al. (2021) Active zone compaction correlates with presynaptic homeostatic potentiation. Cell reports, 37(1), 109770.