Resource Summary Report

Generated by NIF on Apr 21, 2025

o²S²PARC

RRID:SCR_018997

Type: Tool

Proper Citation

o²S²PARC (RRID:SCR_018997)

Resource Information

URL: https://docs.osparc.io

Proper Citation: o²S²PARC (RRID:SCR_018997)

Description: Simulation platform that enables users to create, access, tune, and run models or computational algorithms through web based interface. Web interactive simulation platform that hosts SPARC computational models and solvers. Allows collaborative development and sharing, model coupling and cloud based execution, data visualization and analysis, and ensures sustainability of computational models developed within SPARC. Enables users to create predictive, multiscale, multi-physics models spanning from modulation sources acting on peripheral nervous system (PNS) to resulting modulation of organ functional response.

Abbreviations: osparc

Synonyms: open online Simulation platform for Stimulating Peripheral Activity to Relieve Conditions

Resource Type: software resource, software application, simulation software

Keywords: SPARC, SPARC computational model, data sharing, model coupling, cloud based execution, data visualization, data analysis, peripheral nervous system, organ functional response

Funding:

Availability: Free, Freely available

Resource Name: o²S²PARC

Resource ID: SCR_018997

Record Creation Time: 20220129T080342+0000

Record Last Update: 20250421T054303+0000

Ratings and Alerts

No rating or validation information has been found for o²S²PARC.

No alerts have been found for o²S²PARC.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 1 mentions in open access literature.

Listed below are recent publications. The full list is available at NIF.

Aribi HB, et al. (2024) NeuroVar: an open-source tool for the visualization of gene expression and variation data for biomarkers of neurological diseases. GigaByte (Hong Kong, China), 2024, gigabyte143.