Resource Summary Report

Generated by NIF on May 23, 2025

Jupyter-client

RRID:SCR_018413

Type: Tool

Proper Citation

Jupyter-client (RRID:SCR_018413)

Resource Information

URL: https://pypi.org/project/jupyter-client/5.2.3/

Proper Citation: Jupyter-client (RRID:SCR_018413)

Description: Jupyter protocol implementation and client libraries. Part of Project Jupyter which exists to develop open-source software, open-standards, and services for interactive computing across dozens of programming languages. Jupyter-client contains reference implementation of Jupyter protocol and provides client and kernel management APIs for working with kernels.

Resource Type: software application, software resource

Keywords: Jupyter protocol implementation, Jupyter client library, kernel management API, kernel

Funding:

Availability: Free, Freely available

Resource Name: Jupyter-client

Resource ID: SCR_018413

Alternate URLs: https://github.com/jupyter/jupyter_client/, https://jupyter-

client.readthedocs.io/en/stable/

License: BSD License

Record Creation Time: 20220129T080340+0000

Record Last Update: 20250522T061208+0000

Ratings and Alerts

No rating or validation information has been found for Jupyter-client.

No alerts have been found for Jupyter-client.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 6 mentions in open access literature.

Listed below are recent publications. The full list is available at NIF.

Standvoss K, et al. (2024) Shortcut citations in the methods section: Frequency, problems, and strategies for responsible reuse. PLoS biology, 22(4), e3002562.

Wen Z, et al. (2022) EpiTopics: A dynamic machine learning model to predict and inform non-pharmacological public health interventions from global news reports. STAR protocols, 3(2), 101463.

Cheeseman JR, et al. (2022) Scale ambiguities in material recognition. iScience, 25(3), 103970.

Jambor H, et al. (2021) Creating clear and informative image-based figures for scientific publications. PLoS biology, 19(3), e3001161.

Liebal UW, et al. (2021) Insight to Gene Expression From Promoter Libraries With the Machine Learning Workflow Exp2lpynb. Frontiers in bioinformatics, 1, 747428.

Boughter CT, et al. (2020) Biochemical patterns of antibody polyreactivity revealed through a bioinformatics-based analysis of CDR loops. eLife, 9.