Resource Summary Report

Generated by <u>NIF</u> on May 21, 2025

Cancer Imaging Phenomics Toolkit

RRID:SCR_017323 Type: Tool

Proper Citation

Cancer Imaging Phenomics Toolkit (RRID:SCR_017323)

Resource Information

URL: https://www.med.upenn.edu/cbica/captk/

Proper Citation: Cancer Imaging Phenomics Toolkit (RRID:SCR_017323)

Description: Software platform for analysis of radiographic cancer images. Used as quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome.

Abbreviations: CaPTk

Synonyms: Cancer Imaging Phenomics Toolkit

Resource Type: software resource, software application, data processing software, image analysis software

Defining Citation: PMID:29340286

Keywords: analysis, radiographic, cancer, image, quantitative, analytics

Related Condition: Cancer

Funding: NCI U24 CA189523

Availability: Free, Available for download, Freely available

Resource Name: Cancer Imaging Phenomics Toolkit

Resource ID: SCR_017323

Alternate URLs: https://github.com/CBICA/CaPTk/

License: https://github.com/CBICA/CaPTk/blob/master/LICENSE

Record Creation Time: 20220129T080334+0000

Record Last Update: 20250519T204537+0000

Ratings and Alerts

No rating or validation information has been found for Cancer Imaging Phenomics Toolkit.

No alerts have been found for Cancer Imaging Phenomics Toolkit.

Data and Source Information

Source: <u>SciCrunch Registry</u>

Usage and Citation Metrics

We found 6 mentions in open access literature.

Listed below are recent publications. The full list is available at <u>NIF</u>.

Varghese BA, et al. (2024) Technical and clinical considerations of a physical liver phantom for CT radiomics analysis. Journal of applied clinical medical physics, 25(4), e14309.

Singh G, et al. (2024) -New frontiers in domain-inspired radiomics and radiogenomics: increasing role of molecular diagnostics in CNS tumor classification and grading following WHO CNS-5 updates. Cancer imaging : the official publication of the International Cancer Imaging Society, 24(1), 133.

Bianconi A, et al. (2023) Deep learning-based algorithm for postoperative glioblastoma MRI segmentation: a promising new tool for tumor burden assessment. Brain informatics, 10(1), 26.

Moya-Sáez E, et al. (2022) Synthetic MRI improves radiomics-based glioblastoma survival prediction. NMR in biomedicine, 35(9), e4754.

Varghese BA, et al. (2021) Predicting clinical outcomes in COVID-19 using radiomics on chest radiographs. The British journal of radiology, 94(1126), 20210221.

Fathi Kazerooni A, et al. (2020) Cancer Imaging Phenomics via CaPTk: Multi-Institutional Prediction of Progression-Free Survival and Pattern of Recurrence in Glioblastoma. JCO clinical cancer informatics, 4, 234.