Resource Summary Report

Generated by NIF on May 16, 2025

Argonne National Laboratory Labs and Facilities

RRID:SCR_011062

Type: Tool

Proper Citation

Argonne National Laboratory Labs and Facilities (RRID:SCR_011062)

Resource Information

URL: https://www.anl.gov/research-facilities

Proper Citation: Argonne National Laboratory Labs and Facilities (RRID:SCR_011062)

Description: Argonne National Laboratory, located just outside of Chicago, is one of the U.S. Department of Energy"s largest national laboratories for scientific and engineering research to solve most important challenges in energy, environment and national security. Programmatic activities cover all aspects of innovation ecology including basic research, technology development and prototype development and testing. We regularly work with industry through exclusive licensing, joint research and variety of other mechanisms to transfer our inventions to marketplace.

Abbreviations: Argonne Labs & Facilities, Argonne Labs and Facilities

Synonyms: Argonne National Laboratory Labs & Facilities

Resource Type: data or information resource, portal

Funding:

Resource Name: Argonne National Laboratory Labs and Facilities

Resource ID: SCR_011062

Alternate IDs: SciEx_9914

Old URLs: http://www.scienceexchange.com/facilities/argonne-national-laboratory

Record Creation Time: 20220129T080302+0000

Record Last Update: 20250516T053954+0000

Ratings and Alerts

No rating or validation information has been found for Argonne National Laboratory Labs and Facilities.

No alerts have been found for Argonne National Laboratory Labs and Facilities.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 1 mentions in open access literature.

Listed below are recent publications. The full list is available at NIF.

Hudson JD, et al. (2021) A complete Protocadherin-19 ectodomain model for evaluating epilepsy-causing mutations and potential protein interaction sites. Structure (London, England: 1993), 29(10), 1128.