Resource Summary Report

Generated by NIF on May 2, 2025

Mount Sinai Biobank

RRID:SCR 004845

Type: Tool

Proper Citation

Mount Sinai Biobank (RRID:SCR_004845)

Resource Information

URL: http://www.mssm.edu/research/institutes/institute-for-personalized-medicine/biobank

Proper Citation: Mount Sinai Biobank (RRID:SCR_004845)

Description: The Mount Sinai Biobank is a large collection of DNA and plasma samples that are stored in a way that protects patients" privacy while allowing research to be performed on de-identified clinical information from Mount Sinai"s data warehouse system. The Biobank"s goal is to acquire samples from a total of 100,000 donors over a period of several years. Mount Sinai is one of only a handful of places nationwide establishing biobanks on such a large scale. Funded by the Charles R. Bronfman Institute for Personalized Medicine, the Biobank project is a research project that is approved by the Mount Sinai Institutional Review Board and is continuously reviewed. Biobank Facts: * 17947 donors between 18 and 89 years of age have already participated in Biobank. * 194111 aliquots of DNA and * 212005 aliquots of plasma are available for future research.

Abbreviations: Mount Sinai Biobank

Synonyms: Mount Sinai School of Medicine Biobank

Resource Type: material resource, biomaterial supply resource

Keywords: dna, plasma, clinical data

Funding: Charles R. Bronfman Institute for Personalized Medicine

Resource Name: Mount Sinai Biobank

Resource ID: SCR 004845

Alternate IDs: nlx_82806

Old URLs: http://www.mssm.edu/research/institutes/institute-for-personalized-medicine/ipm-

research/biobank

Record Creation Time: 20220129T080226+0000

Record Last Update: 20250501T080644+0000

Ratings and Alerts

No rating or validation information has been found for Mount Sinai Biobank.

No alerts have been found for Mount Sinai Biobank.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 1 mentions in open access literature.

Listed below are recent publications. The full list is available at NIF.

Roughton K, et al. (2013) Irradiation to the young mouse brain impaired white matter growth more in females than in males. Cell death & disease, 4(10), e897.