Resource Summary Report

Generated by NIF on Apr 18, 2025

Niftilib

RRID:SCR 003355

Type: Tool

Proper Citation

Niftilib (RRID:SCR_003355)

Resource Information

URL: http://niftilib.sourceforge.net

Proper Citation: Niftilib (RRID:SCR_003355)

Description: Niftilib is a set of i/o libraries for reading and writing files in the nifti-1 data format. nifti-1 is a binary file format for storing medical image data, e.g. magnetic resonance image (MRI) and functional MRI (fMRI) brain images. Niftilib currently has C, Java, MATLAB, and Python libraries; we plan to add some MATLAB/mex interfaces to the C library in the not too distant future. Niftilib has been developed by members of the NIFTI DFWG and volunteers in the neuroimaging community and serves as a reference implementation of the nifti-1 file format. In addition to being a reference implementation, we hope it is also a useful i/o library. Niftilib code is released into the public domain, developers are encouraged to incorporate niftilib code into their applications, and, to contribute changes and enhancements to niftilib. Please contact us if you would like to contribute additional functionality to the i/o library.

Abbreviations: Niftilib

Synonyms: The Nifti Libraries, Nifti Libraries

Resource Type: software library, source code, software resource, software toolkit

Keywords: image data, mri, fmri, brain image, image, brain, neuroimaging

Funding:

Resource Name: Niftilib

Resource ID: SCR_003355

Alternate IDs: nif-0000-32011

Record Creation Time: 20220129T080218+0000

Record Last Update: 20250418T055018+0000

Ratings and Alerts

No rating or validation information has been found for Niftilib.

No alerts have been found for Niftilib.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 3 mentions in open access literature.

Listed below are recent publications. The full list is available at NIF.

Höller P, et al. (2019) MEEGIPS-A Modular EEG Investigation and Processing System for Visual and Automated Detection of High Frequency Oscillations. Frontiers in neuroinformatics, 13, 20.

Bajcsy P, et al. (2017) Modeling, validation and verification of three-dimensional cell-scaffold contacts from terabyte-sized images. BMC bioinformatics, 18(1), 526.

Maertens M, et al. (2008) Retinotopic activation in response to subjective contours in primary visual cortex. Frontiers in human neuroscience, 2, 2.