Resource Summary Report

Generated by NIF on Apr 17, 2025

Cognitive Paradigm Ontology

RRID:SCR_002235

Type: Tool

Proper Citation

Cognitive Paradigm Ontology (RRID:SCR_002235)

Resource Information

URL: http://cogpo.org

Proper Citation: Cognitive Paradigm Ontology (RRID:SCR_002235)

Description: Ontology used to describe the experimental conditions within cognitive and behavioral experiments, primarily in humans for application and use in the functional neuroimaging community. CogPO has been developed through the integration of the Functional Imaging Biomedical Informatics Research Network (FBIRN) Human Imaging Database (HID) and the BrainMap Database. The design of CogPO concentrates on what can be observed directly: categorization of each paradigm in terms of (1) the stimulus presented to the subjects, (2) the requested instructions, and (3) the returned response.

Abbreviations: CogPO

Resource Type: ontology, controlled vocabulary, data or information resource

Keywords: functional neuroimaging, owl, cognition, behavior

Funding: NIMH 1R01MH084812-01A1

Resource Name: Cognitive Paradigm Ontology

Resource ID: SCR_002235

Alternate IDs: nlx_155537

Alternate URLs: http://www.nitrc.org/projects/cogpo

Record Creation Time: 20220129T080212+0000

Record Last Update: 20250416T063258+0000

Ratings and Alerts

No rating or validation information has been found for Cognitive Paradigm Ontology.

No alerts have been found for Cognitive Paradigm Ontology.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 9 mentions in open access literature.

Listed below are recent publications. The full list is available at NIF.

van Stee A, et al. (2025) Apples and oranges: Conceptual review as task analysis method. The European journal of neuroscience, 61(1), e16623.

Riedel MC, et al. (2019) Automated, Efficient, and Accelerated Knowledge Modeling of the Cognitive Neuroimaging Literature Using the ATHENA Toolkit. Frontiers in neuroscience, 13, 494.

Riedel MC, et al. (2018) Dissociable meta-analytic brain networks contribute to coordinated emotional processing. Human brain mapping, 39(6), 2514.

Hastings J, et al. (2014) Interdisciplinary perspectives on the development, integration, and application of cognitive ontologies. Frontiers in neuroinformatics, 8, 62.

Chakrabarti C, et al. (2014) Statistical algorithms for ontology-based annotation of scientific literature. Journal of biomedical semantics, 5(Suppl 1 Proceedings of the Bio-Ontologies Spec Interest G), S2.

Turner MD, et al. (2013) Automated annotation of functional imaging experiments via multilabel classification. Frontiers in neuroscience, 7, 240.

Poldrack RA, et al. (2011) The cognitive atlas: toward a knowledge foundation for cognitive neuroscience. Frontiers in neuroinformatics, 5, 17.

Turner JA, et al. (2010) Application of neuroanatomical ontologies for neuroimaging data annotation. Frontiers in neuroinformatics, 4.

Congdon E, et al. (2010) Neurocognitive phenotypes and genetic dissection of disorders of brain and behavior. Neuron, 68(2), 218.