Resource Summary Report

Generated by NIF on May 20, 2025

Radiological Research Accelerator Facility

RRID:SCR 001425

Type: Tool

Proper Citation

Radiological Research Accelerator Facility (RRID:SCR_001425)

Resource Information

URL: http://www.raraf.org/

Proper Citation: Radiological Research Accelerator Facility (RRID:SCR_001425)

Description: Biomedical technology research center dedicated for radiobiological research with available ionizing radiations such as protons, alpha particles, and neutrons. RARAF is well-established and highly user-friendly. The focus of RARAF is the development of high-throughput single-cell/single-particle microbeams, which can deliver defined amounts of ionizing radiation into individual cells with a spatial resolution of a few microns or better. The ability of a microbeam to put double strand break damage at any specific known location in a given cell has allowed new approaches to the study of damage signaling.

Abbreviations: RARAF

Synonyms: Columbia University Radiological Research Accelerator Facility

Resource Type: training resource, biomedical technology research center, service resource,

access service resource

Keywords: radiobiological, ionizing radiation, proton, alpha particle, neutron, radiation,

microbeam, irradiator, accelerator, ion, x-ray, cell

Funding: NIBIB P41 EB002033

Resource Name: Radiological Research Accelerator Facility

Resource ID: SCR_001425

Alternate IDs: nlx 152647

Record Creation Time: 20220129T080207+0000

Record Last Update: 20250519T205045+0000

Ratings and Alerts

No rating or validation information has been found for Radiological Research Accelerator Facility.

No alerts have been found for Radiological Research Accelerator Facility.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 1 mentions in open access literature.

Listed below are recent publications. The full list is available at NIF.

Mundkur L, et al. (2013) Mucosal tolerance to a combination of ApoB and HSP60 peptides controls plaque progression and stabilizes vulnerable plaque in Apob(tm2Sgy)Ldlr(tm1Her)/J mice. PloS one, 8(3), e58364.