Resource Summary Report

Generated by NIF on May 23, 2025

BraVa

RRID:SCR_001407

Type: Tool

Proper Citation

BraVa (RRID:SCR_001407)

Resource Information

URL: http://cng.gmu.edu/brava

Proper Citation: BraVa (RRID:SCR_001407)

Description: A database of digital reconstructions of the human brain arterial arborizations from 61 healthy adult subjects along with extracted morphological measurements. The arterial arborizations include the six major trees stemming from the circle of Willis, namely: the left and right Anterior Cerebral Arteries (ACAs), Middle Cerebral Arteries (MCAs), and Posterior Cerebral Arteries (PCAs).

Abbreviations: BraVa

Resource Type: data or information resource, database

Defining Citation: PMID:23727319

Keywords: digital reconstruction, morphometric analysis, cerebrum, arterial vasculature, magnetic resonance angiography, adult human, morphology, artery, arborization, circle of willis, cerebral artery, male, female, magnetic resonance

Related Condition: Healthy

Funding: NINDS NS39600;

NIBIB EB001955; NINDS NS061770; NIMH P20 MH52176

Availability: Free, Public

Resource Name: BraVa

Resource ID: SCR_001407

Alternate IDs: nlx_152630

Alternate URLs: http://www.nitrc.org/projects/breva

Record Creation Time: 20220129T080207+0000

Record Last Update: 20250523T054158+0000

Ratings and Alerts

No rating or validation information has been found for BraVa.

No alerts have been found for BraVa.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 8 mentions in open access literature.

Listed below are recent publications. The full list is available at NIF.

Sheridan N, et al. (2024) Building Resilience and Attachment in Vulnerable Adolescents: The Feasibility of a Virtually Delivered Group Intervention for Adolescents with Suicidal Ideation and Their Caregivers. Telemedicine reports, 5(1), 36.

Volpe G, et al. (2024) Frictional instabilities in clay illuminate the origin of slow earthquakes. Science advances, 10(26), eadn0869.

Abdellah M, et al. (2023) Ultraliser: a framework for creating multiscale, high-fidelity and geometrically realistic 3D models for in silico neuroscience. Briefings in bioinformatics, 24(1).

Padmos RM, et al. (2021) Coupling one-dimensional arterial blood flow to three-dimensional tissue perfusion models for in silico trials of acute ischaemic stroke. Interface focus, 11(1), 20190125.

Blowers S, et al. (2018) How does blood regulate cerebral temperatures during hypothermia? Scientific reports, 8(1), 7877.

Aliaga Maraver JJ, et al. (2018) A Method for the Symbolic Representation of Neurons.

Frontiers in neuroanatomy, 12, 106.

Peter R, et al. (2017) Quantitative Analysis of Geometry and Lateral Symmetry of Proximal Middle Cerebral Artery. Journal of stroke and cerebrovascular diseases: the official journal of National Stroke Association, 26(10), 2427.

Mestak O, et al. (2013) Breast Reconstruction after a Bilateral Mastectomy Using the BRAVA Expansion System and Fat Grafting. Plastic and reconstructive surgery. Global open, 1(8), e71.