Resource Summary Report

Generated by NIF on May 11, 2025

Gene Bridges

RRID:SCR_000483

Type: Tool

Proper Citation

Gene Bridges (RRID:SCR_000483)

Resource Information

URL: http://www.genebridges.com/

Proper Citation: Gene Bridges (RRID:SCR_000483)

Description: A biotech company that commercializes its patented Red/ET recombination worldwide as licenses and supplies several products for the pharmaceutical and biotech industry as well as academia. It operates from the Technologie Park in Heidelberg and provides customized in-house DNA modification of any kind. Recombineering with Red/ET allows cloning, subcloning and modification of DNA at any chosen position. It permits precise engineering of DNA molecules of any size, including very large ones such as BACs or the E.coli chromosome.

Abbreviations: Gene Bridges

Synonyms: Gene Bridges - The Recombineering Company, Gene Bridges GmbH

Resource Type: commercial organization

Keywords: recombineering, red/et recombination, license, dna modification, dna,

recombination kit

Funding:

Resource Name: Gene Bridges

Resource ID: SCR_000483

Alternate IDs: nlx 158134

Record Creation Time: 20220129T080201+0000

Record Last Update: 20250420T013951+0000

Ratings and Alerts

No rating or validation information has been found for Gene Bridges.

No alerts have been found for Gene Bridges.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 3 mentions in open access literature.

Listed below are recent publications. The full list is available at NIF.

Itoh M, et al. (2018) Deficiency of AMPAR-Palmitoylation Aggravates Seizure Susceptibility. The Journal of neuroscience: the official journal of the Society for Neuroscience, 38(47), 10220.

Lee HM, et al. (2015) IFN? signaling endows DCs with the capacity to control type I inflammation during parasitic infection through promoting T-bet+ regulatory T cells. PLoS pathogens, 11(2), e1004635.

Giudice A, et al. (2008) Genetic modification of human embryonic stem cells for derivation of target cells. Cell stem cell, 2(5), 422.