Resource Summary Report

Generated by NIF on Apr 16, 2025

Emory University School of Medicine Flow Cytometry Core Facility

RRID:SCR_023536

Type: Tool

Proper Citation

Emory University School of Medicine Flow Cytometry Core Facility (RRID:SCR_023536)

Resource Information

URL: https://www.cores.emory.edu/fcc/

Proper Citation: Emory University School of Medicine Flow Cytometry Core Facility (RRID:SCR_023536)

Description: Core provides sorting, sample analysis and analyzer training. Provides quantitative flow cytometric analyses on samples including blood, bone marrow, spleen, serum, plasma, solid tissues, cell extracts to support both clinical and basic research efforts. These analyses will provide insight on cell function and precursors whose abundance can be monitored as biomarkers to predict and follow progression of a wide range of diseases, such as H1N1, yellow fever, dengue, neurodegenerative diseases, stem cell studies. Provides consultations, expert training, and support for all systems and provides access to equipment.

Abbreviations: EFCC

Synonyms: Emory Flow Cytometry Core (EFCC), Emory University Emory Flow Cytometry

Core

Resource Type: access service resource, core facility, service resource

Keywords: USEDit, ABRF, sorting, sample analysis, training

Funding:

Availability: Open

Resource Name: Emory University School of Medicine Flow Cytometry Core Facility

Resource ID: SCR_023536

Alternate IDs: ABRF_1739

Alternate URLs: https://coremarketplace.org/?FacilityID=1739&citation=1

Record Creation Time: 20230503T050210+0000

Record Last Update: 20250412T060549+0000

Ratings and Alerts

No rating or validation information has been found for Emory University School of Medicine Flow Cytometry Core Facility.

No alerts have been found for Emory University School of Medicine Flow Cytometry Core Facility.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 1 mentions in open access literature.

Listed below are recent publications. The full list is available at <u>NIF</u>.

Yoon SB, et al. (2024) Subpopulation commensalism promotes Rac1-dependent invasion of single cells via laminin-332. The Journal of cell biology, 223(6).