Resource Summary Report

Generated by <u>NIF</u> on May 18, 2025

New York University School of Medicine IonLab Core Facility

RRID:SCR_021754 Type: Tool

Proper Citation

New York University School of Medicine IonLab Core Facility (RRID:SCR_021754)

Resource Information

URL: https://med.nyu.edu/research/scientific-cores-shared-resources/ion-laboratory

Proper Citation: New York University School of Medicine IonLab Core Facility (RRID:SCR_021754)

Description: Electrophysiology core facility that is part of Ion Channels and Transporters in Immunity Research Program.Research area includes ion channel and transporter function and ionic signaling in immune cells.Users who are studying other cell types or organ systems are welcome.Provides assistance with experimental design, training, implementation, and data analysis.

Synonyms: IonLab

Resource Type: core facility, service resource, access service resource

Keywords: USEDit, ABRF, ion channel, transporter function, ionic signaling, immune cells

Funding: NIAID AI097302

Availability: open

Resource Name: New York University School of Medicine IonLab Core Facility

Resource ID: SCR_021754

Alternate IDs: ABRF_1221

Alternate URLs: https://coremarketplace.org/?FacilityID=1221

Record Creation Time: 20220129T080357+0000

Record Last Update: 20250517T060451+0000

Ratings and Alerts

No rating or validation information has been found for New York University School of Medicine IonLab Core Facility.

No alerts have been found for New York University School of Medicine IonLab Core Facility.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 5 mentions in open access literature.

Listed below are recent publications. The full list is available at <u>NIF</u>.

Samper N, et al. (2024) Kir6.1, a component of an ATP-sensitive potassium channel, regulates natural killer cell development. Frontiers in immunology, 15, 1490250.

Weiner SP, et al. (2024) Sex difference in the effect of environmental enrichment on food restriction-induced persistence of cocaine conditioned place preference and mechanistic underpinnings. Addiction neuroscience, 10.

Ji C, et al. (2024) Neuronal hypofunction and network dysfunction in a mouse model at an early stage of tauopathy. Alzheimer's & dementia : the journal of the Alzheimer's Association.

Ji C, et al. (2024) Neuronal hypofunction and network dysfunction in a mouse model at an early stage of tauopathy. bioRxiv : the preprint server for biology.

Samper N, et al. (2024) Kir6.1, a component of an ATP-sensitive potassium channel, regulates natural killer cell development. bioRxiv : the preprint server for biology.