Resource Summary Report

Generated by NIF on May 19, 2025

Ugo Basile Dynamic Plantar Aesthesiometer

RRID:SCR_021751

Type: Tool

Proper Citation

Ugo Basile Dynamic Plantar Aesthesiometer (RRID:SCR_021751)

Resource Information

URL: https://www.ugobasile.com/products/catalogue/pain-and-inflammation/dynamic-plantar-aesthesiometer-electronic-von-frey

Proper Citation: Ugo Basile Dynamic Plantar Aesthesiometer (RRID:SCR_021751)

Description: Aesthesiometer for mechanical stimulation Model 37550. Instrument designed to automate assessment of touch sensitivity on plantar surface of rats or mice and comes ready with all necessary accessories. At each paw withdrawal, automatically detects and records latency time, and actual force at time of paw withdrawal reflex. Movable force actuator is positioned below plantar surface of animal and desired force and force speed is applied, as preset by operator. Von Frey type 0.5mm rigid filament exerts increasing force, until animal twitches its paw.

Abbreviations: DPA

Synonyms: Electronic Von Frey, Dynamic Plantar Aesthesiometer for mechanical stimulation Model 37550, Ugo Basile Dynamic Plantar Aesthesiometer, Plantar Von Frey instrument

Resource Type: instrument resource

Keywords: Instrument, equipment, USEDit, mechanical stimulation, touch sensitivity, automated assessment

Funding:

Availability: Restricted

Resource Name: Ugo Basile Dynamic Plantar Aesthesiometer

Resource ID: SCR_021751

Alternate IDs: Model_Number_37550

Record Creation Time: 20220129T080357+0000

Record Last Update: 20250420T015132+0000

Ratings and Alerts

No rating or validation information has been found for Ugo Basile Dynamic Plantar Aesthesiometer.

No alerts have been found for Ugo Basile Dynamic Plantar Aesthesiometer.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 2 mentions in open access literature.

Listed below are recent publications. The full list is available at <u>NIF</u>.

Lopez JA, et al. (2024) Caldendrin Is a Repressor of PIEZO2 Channels and Touch Sensation in Mice. The Journal of neuroscience: the official journal of the Society for Neuroscience, 44(10).

Segelcke D, et al. (2021) Tmem160 contributes to the establishment of discrete nerve injury-induced pain behaviors in male mice. Cell reports, 37(12), 110152.