Resource Summary Report

Generated by NIF on May 14, 2025

University of Nebraska Medical Center Computational Chemistry Core Facility

RRID:SCR_021023

Type: Tool

Proper Citation

University of Nebraska Medical Center Computational Chemistry Core Facility (RRID:SCR_021023)

Resource Information

URL: https://www.unmc.edu/vcr/cores/vcr-cores/compchem/index.html

Proper Citation: University of Nebraska Medical Center Computational Chemistry Core Facility (RRID:SCR_021023)

Description: Core offers wide variety of services, including access to the Schrodinger platform and high-throughput computing. Services include examining molecular structures and mechanisms in atomic detail and provide graphically rich analysis suitable for inclusion in publications and grants.

Synonyms: University of Nebraska Medical Center Computational Chemistry Core, UNMC Computational Chemistry Core

Resource Type: service resource, core facility, access service resource

Keywords: USEDit, ABRF, ABRF

Funding:

Resource Name: University of Nebraska Medical Center Computational Chemistry Core

Facility

Resource ID: SCR_021023

Alternate IDs: ABRF_1056

Alternate URLs: https://coremarketplace.org/?FacilityID=1056

Record Creation Time: 20220129T080353+0000

Record Last Update: 20250514T061901+0000

Ratings and Alerts

No rating or validation information has been found for University of Nebraska Medical Center Computational Chemistry Core Facility.

No alerts have been found for University of Nebraska Medical Center Computational Chemistry Core Facility.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 1 mentions in open access literature.

Listed below are recent publications. The full list is available at NIF.

Morsy A, et al. (2022) Functionalized Allopurinols Targeting Amyloid-Binding Alcohol Dehydrogenase Rescue A?-Induced Mitochondrial Dysfunction. ACS chemical neuroscience, 13(14), 2176.