Resource Summary Report

Generated by <u>NIF</u> on May 27, 2025

Harvard Apparatus Single Animal Tabletop Isoflurane Anesthesia System with Small Induction Box

RRID:SCR_018956 Type: Tool

Proper Citation

Harvard Apparatus Single Animal Tabletop Isoflurane Anesthesia System with Small Induction Box (RRID:SCR_018956)

Resource Information

URL: https://www.harvardapparatus.com/tabletop-anesthesia-systems.html#collapseTwo

Proper Citation: Harvard Apparatus Single Animal Tabletop Isoflurane Anesthesia System with Small Induction Box (RRID:SCR_018956)

Description: Tabletop anesthesia system suitable for mice, rats and other small animals under 10 lb. Passive scavenging systems. Funnel fill isoflurane vaporizers.

Synonyms: Tabletop Anesthesia System, Anesthesia Chamber

Resource Type: instrument resource

Keywords: Rat Anesthesia, Mice Anesthesia, Small Animal Anesthesia, anesthesia, tabletop system, isoflurane vaporizer, instrument, equipment

Funding:

Availability: Restricted

Resource Name: Harvard Apparatus Single Animal Tabletop Isoflurane Anesthesia System with Small Induction Box

Resource ID: SCR_018956

Record Creation Time: 20220129T080342+0000

Record Last Update: 20250525T031608+0000

Ratings and Alerts

No rating or validation information has been found for Harvard Apparatus Single Animal Tabletop Isoflurane Anesthesia System with Small Induction Box.

No alerts have been found for Harvard Apparatus Single Animal Tabletop Isoflurane Anesthesia System with Small Induction Box.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 6 mentions in open access literature.

Listed below are recent publications. The full list is available at NIF.

Liu Y, et al. (2024) Imbalance in Glucose Metabolism Regulates the Transition of Microglia from Homeostasis to Disease-Associated Microglia Stage 1. The Journal of neuroscience : the official journal of the Society for Neuroscience, 44(20).

Nayana J, et al. (2024) Repeated finasteride administration promotes synaptic plasticity and produces antidepressant- and anxiolytic-like effects in female rats. Journal of neuroscience research, 102(3), e25306.

Zinani DB, et al. (2023) SCH23390 and a humanized anti-cocaine mAb decrease the latency to cocaine-induced reinstatement of lever pressing behavior in rats that self-administer cocaine. Scientific reports, 13(1), 14566.

Zinani DB, et al. (2022) The compulsion zone explains the self-administration of cocaine, RTI-55 and bupropion in rats. Brain research, 1774, 147707.

Subhadeep D, et al. (2021) Exposure to Short Photoperiod Regime Restores Spatial Cognition in Ventral Subicular Lesioned Rats: Potential Role of Hippocampal Plasticity, Glucocorticoid Receptors, and Neurogenesis. Molecular neurobiology, 58(9), 4437.

Salaka RJ, et al. (2021) Enriched environment ameliorates chronic temporal lobe epilepsyinduced behavioral hyperexcitability and restores synaptic plasticity in CA3-CA1 synapses in male Wistar rats. Journal of neuroscience research, 99(6), 1646.