Resource Summary Report

Generated by NIF on Apr 29, 2025

Florida State University Physical Biochemistry Core Facility

RRID:SCR_016714 Type: Tool

Proper Citation

Florida State University Physical Biochemistry Core Facility (RRID:SCR_016714)

Resource Information

URL: http://biophysics.fsu.edu/facilities/physical-biochemistry-facility/

Proper Citation: Florida State University Physical Biochemistry Core Facility (RRID:SCR_016714)

Description: Facility for biophysical studies of macromolecules with emphasis on providing resources, instrumentation, training, and guidance to graduate and undergraduate students.

Abbreviations: PBF

Synonyms: The Physical Biochemistry Facility (PBF), The Physical Biochemistry Facility, Physical Biochemistry Facility

Resource Type: production service resource, standard specification, availability annotation standard, service resource, material service resource, narrative resource, training service resource, nif annotation standard, the community can contribute to this resource, core facility, data or information resource, access service resource

Keywords: core, facility, biophysical, study, macromolecule, providing, resource, instrument, training, guidance, student, Florida, State, University

Funding:

Availability: Restricted

Resource Name: Florida State University Physical Biochemistry Core Facility

Resource ID: SCR_016714

Record Creation Time: 20220129T080332+0000

Record Last Update: 20250428T054015+0000

Ratings and Alerts

No rating or validation information has been found for Florida State University Physical Biochemistry Core Facility.

No alerts have been found for Florida State University Physical Biochemistry Core Facility.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 1 mentions in open access literature.

Listed below are recent publications. The full list is available at <u>NIF</u>.

Yang M, et al. (2022) Valence-induced jumps in coacervate properties. Science advances, 8(20), eabm4783.