Resource Summary Report

Generated by NIF on Apr 19, 2025

Leibniz Institute for Age Research

RRID:SCR_011340 Type: Tool

Proper Citation

Leibniz Institute for Age Research (RRID:SCR_011340)

Resource Information

URL: http://www.imb-jena.de

Proper Citation: Leibniz Institute for Age Research (RRID:SCR_011340)

Description: Institute whose mission is to understand the molecular mechanisms that underlie the aging process and that lead to age-related diseases. They hope that eventually this knowledge can contribute to a more healthy aging of people. The central question they are aiming at answering is, What are the molecular mechanisms and genetic factors contributing to the evolution of cellular and organismal dysfunction during human aging?

Synonyms: Leibniz Institute for Age Research - Fritz Lipmann Institute

Resource Type: institution

Related Condition: Aging, Age-related disease

Funding:

Resource Name: Leibniz Institute for Age Research

Resource ID: SCR_011340

Alternate IDs: nif-0000-30559

Record Creation Time: 20220129T080303+0000

Record Last Update: 20250410T070108+0000

Ratings and Alerts

No rating or validation information has been found for Leibniz Institute for Age Research.

No alerts have been found for Leibniz Institute for Age Research.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 3 mentions in open access literature.

Listed below are recent publications. The full list is available at <u>NIF</u>.

Laios A, et al. (2013) Pre-Treatment of platinum resistant ovarian cancer cells with an MMP-9/MMP-2 inhibitor prior to cisplatin enhances cytotoxicity as determined by high content screening. International journal of molecular sciences, 14(1), 2085.

Hiss DC, et al. (2007) Combination of tunicamycin with anticancer drugs synergistically enhances their toxicity in multidrug-resistant human ovarian cystadenocarcinoma cells. Cancer cell international, 7, 5.

Alazard R, et al. (2005) Identification of the 'NORE' (N-Oct-3 responsive element), a novel structural motif and composite element. Nucleic acids research, 33(5), 1513.