Resource Summary Report

Generated by <u>NIF</u> on May 22, 2025

Functional Analysis of Diffusion Tensor

RRID:SCR_008888 Type: Tool

Proper Citation

Functional Analysis of Diffusion Tensor (RRID:SCR_008888)

Resource Information

URL: http://www.nitrc.org/projects/fadtts/

Proper Citation: Functional Analysis of Diffusion Tensor (RRID:SCR_008888)

Description: Pipeline developed for delineating the association between multiple diffusion properties along major white matter fiber bundles with a set of covariates of interest, such as age, diagnostic status and gender, and the structure of the variability of these white matter tract properties in various diffusion tensor imaging studies. FADTTS can be used to facilitate understanding of normal brain development, the neural bases of neuropsychiatric disorders, and the joint effects of environmental and genetic factors on white matter fiber bundles. The advantages of FADTTS compared with the other existing approaches are that they are capable of modelling the structured inter-subject variability, testing the joint effects, and constructing their simultaneous confidence bands.

Abbreviations: FADTTS

Synonyms: Functional Analysis of Diffusion Tensor Tract Statistics

Resource Type: software application, software resource, data processing software

Keywords: genomic analysis, diffusion tensor imaging

Funding:

Availability: Academic Free License

Resource Name: Functional Analysis of Diffusion Tensor

Resource ID: SCR_008888

Alternate IDs: nlx_151351

Record Creation Time: 20220129T080249+0000

Record Last Update: 20250522T060520+0000

Ratings and Alerts

No rating or validation information has been found for Functional Analysis of Diffusion Tensor.

No alerts have been found for Functional Analysis of Diffusion Tensor.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 3 mentions in open access literature.

Listed below are recent publications. The full list is available at <u>NIF</u>.

Shi Y, et al. (2016) UNC-Emory Infant Atlases for Macaque Brain Image Analysis: Postnatal Brain Development through 12 Months. Frontiers in neuroscience, 10, 617.

Lee SJ, et al. (2015) Quantitative tract-based white matter heritability in twin neonates. NeuroImage, 111, 123.

Verde AR, et al. (2014) UNC-Utah NA-MIC framework for DTI fiber tract analysis. Frontiers in neuroinformatics, 7, 51.